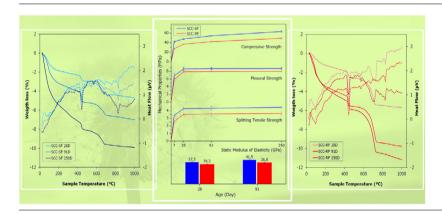
Contents lists available at ScienceDirect

Construction and Building Materials

journal homepage: www.elsevier.com/locate/conbuildmat

Mechanical behaviour of self-compacting concrete made with recovery filler from hot-mix asphalt plants


A. Romero Esquinas ^a, C. Ramos ^a, J.R. Jiménez ^{c,*,1}, J.M. Fernández ^{a,b,*,1}, J. de Brito ^d

- ^a Department of Inorganic Chemistry and Chemical Engineering, School of Engineering Science of Belmez, University of Córdoba, Spain
- ^b Department of Inorganic Chemistry and Chemical Engineering, Faculty of Sciences, University of Córdoba, Spain
- ^c Construction Engineering Area, University of Córdoba, Córdoba, Spain
- d CERIS-ICIST, DECivil, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

HIGHLIGHTS

- · A comparative study of two types of SCC was carried out.
- The aging mechanism of the SCC mixes (SCC-SF and SCC-RF) was different.
- · Pozzolanic reactions occurred during curing of the SCC-SF.
- · Shrinkage in the SCC-RF was lower because of the larger particle size.
- Recovery filler from hot mix asphalt plants is adequate to produce SCC.

GRAPHICAL ABSTRACT

ARTICLE INFO

Article history: Received 19 July 2016 Received in revised form 7 November 2016 Accepted 13 November 2016

Keywords: Self-compacting concrete Recovery filler Siliceous filler Carbonation processes Pozzolanic reactions Ultrasonic pulse velocity Shrinkage

ABSTRACT

The aim of this paper is to assess the feasibility of the use of a fine grain waste generated in hot-mix asphalt plants (HMA), namely recovery filler (RF), as filler materials in self-compacting concrete (SCC) production. A comparative study of two types of SCC was performed. The first concrete type was made incorporating recovery filler (SCC-RF) of a dolomitic nature and the second was made with commercial siliceous filler (SCC-SF), the latter used as reference. Good results of self-compatibility were obtained using RF. The thermogravimetric study showed that in SCC-SF the higher loss weight occurs in the dehydration zone (0-400 °C) and in SCC-RF it occurs in the decarbonation area (550-735 °C). The aging mechanism of both concrete types (SCC-SF and SCC-RF) was different. In the SCC-SF mixes, portlandite undergoes carbonation processes and pozzolanic reactions and in the SCC-RF mixes it only undergoes carbonation processes. The experimental results (splitting tensile strength, flexural strength and static modulus of elasticity) show the validity of using EHE-08, initially proposed for NVC (Normally Vibrated Concrete), in SCC. The ultrasonic pulse velocity values for SCC-SF was greater than for SCC-RF, which can be attributed to compacity and compressive strength. The shrinkage behaviour was better in SCC-RF than SCC-SF, mainly due to the greater particle size of recovery filler (RF), although the SCC-RF mixes showed lower density and mechanical strength than SCC-SF. In short, the SCC manufactured

^{*} Corresponding authors at: Construction Engineering Area, University of Córdoba, Ed. Leonardo Da Vinci, Campus de Rabanales, Ctra. N-IV, km-396, CP 14014 Córdoba, Spain (J.R. Jiménez). Department of Inorganic Chemistry and Chemical Engineering, E.P.S. of Belmez, University of Córdoba, E14240, Spain (J.M. Fernández).

E-mail addresses: jrjimenez@uco.es (J.R. Jiménez), um1feroj@uco.es (J.M. Fernández).

¹ Both authors equally contributed to the paper.